The string of digits in the binary number system represents the quantity


 Alice Madeline Harrington
 5 years ago
 Views:
Transcription
1 Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for data manipulation Data are numbers and other binarycoded information that are operated on Possible data types in registers: o Numbers used in computations o Letters of the alphabet used in data processing o Other discrete symbols used for specific purposes All types of data, except binary numbers, are represented in binarycoded form A number system of base, or radix, r is a system that uses distinct symbols for r digits Numbers are represented by a string of digit symbols The string of digits represents the quantity 7 x x x x 101 The string of digits in the binary number system represents the quantity 1 x x x x x x 2 0 = 45 (101101) 2 = (45) 10 We will also use the octal (radix 8) and hexidecimal (radix 16) number systems (736.4) 8 = 7 x x x x 81 = (478.5) 10 (F3) 16 = F x x 16 0 = (243) 10 Conversion from decimal to radix r system is carried out by separating the number into its integer and fraction parts and converting each part separately Divide the integer successively by r and accumulate the remainders Multiply the fraction successively by r until the fraction becomes zero Computer Architecture 1
2 Each octal digit corresponds to three binary digits Each hexadecimal digit corresponds to four binary digits Rather than specifying numbers in binary form, refer to them in octal or hexadecimal and reduce the number of digits by 1/3 or ¼, respectively Computer Architecture 2
3 Computer Architecture 3
4 A binary code is a group of n bits that assume up to 2 n distinct combinations A four bit code is necessary to represent the ten decimal digits 6 are unused The most popular decimal code is called binarycoded decimal (BCD) BCD is different from converting a decimal number to binary For example 99, when converted to binary, is when represented in BCD is Computer Architecture 4
5 The standard alphanumeric binary code is ASCII This uses seven bits to code 128 characters Binary codes are required since registers can hold binary information only Computer Architecture 5
6 Section 3.2 Complements Complements are used in digital computers for simplifying subtraction and logical manipulation Two types of complements for each base r system: r s complement and (r 1) s complement Given a number N in base r having n digits, the (r 1) s complement of N is defined as (r n 1) N For decimal, the 9 s complement of N is (10 n 1) N The 9 s complement of is = Computer Architecture 6
7 The 9 s complement of is = For binary, the 1 s complement of N is (2 n 1) N The 1 s complement of is = The 1 s complement is the true complement of the number just toggle all bits The r s complement of an ndigit number N in base r is defined as r n N This is the same as adding 1 to the (r 1) s complement The 10 s complement of 2389 is = 7611 The 2 s complement of is = Subtraction of unsigned ndigit numbers: M N o Add M to the r s complement of N this results in M + (r n N) = M N + r n o If M N, the sum will produce an end carry r n which is discarded o If M < N, the sum does not produce an end carry and is equal to r n (N M), which is the r s complement of (N M). To obtain the answer in a familiar form, take the r s complement of the sum and place a negative sign in front. Example: = The 10 s complement of is M = s comp. of N = Sum = Discard end carry = Answer = Example for M < N: = M = s comp. of N = Sum = No end carry Answer = (10 s comp. of 40718) Example for X = and Y = X = s comp. of Y = Sum = Discard end carry = Answer X Y = Y = s comp. of X = Sum = Computer Architecture 7
8 Section 3.3 FixedPoint Representation No end carry Answer = (2 s comp. of ) Positive integers and zero can be represented by unsigned numbers Negative numbers must be represented by signed numbers since + and signs are not available, only 1 s and 0 s are Signed numbers have msb as 0 for positive and 1 for negative msb is the sign bit Two ways to designate binary point position in a register o Fixed point position o Floatingpoint representation Fixed point position usually uses one of the two following positions o A binary point in the extreme left of the register to make it a fraction o A binary point in the extreme right of the register to make it an integer o In both cases, a binary point is not actually present The floatingpoint representations uses a second register to designate the position of the binary point in the first register When an integer is positive, the msb, or sign bit, is 0 and the remaining bits represent the magnitude When an integer is negative, the msb, or sign bit, is 1, but the rest of the number can be represented in one of three ways o Signedmagnitude representation o Signed1 s complement representation o Signed2 s complement representation Consider an 8bit register and the number +14 o The only way to represent it is Consider an 8bit register and the number 14 o Signed magnitude: o Signed 1 s complement: o Signed 2 s complement: Typically use signed 2 s complement Addition of two signedmagnitude numbers follow the normal rules o If same signs, add the two magnitudes and use the common sign o Differing signs, subtract the smaller from the larger and use the sign of the larger magnitude o Must compare the signs and magnitudes and then either add or subtract Addition of two signed 2 s complement numbers does not require a comparison or subtraction only addition and complementation o Add the two numbers, including their sign bits o Discard any carry out of the sign bit position o All negative numbers must be in the 2 s complement form o If the sum obtained is negative, then it is in 2 s complement form Computer Architecture 8
9 Subtraction of two signed 2 s complement numbers is as follows o Take the 2 s complement form of the subtrahend (including sign bit) o Add it to the minuend (including the sign bit) o A carry out of the sign bit position is discarded An overflow occurs when two numbers of n digits each are added and the sum occupies n + 1 digits Overflows are problems since the width of a register is finite Therefore, a flag is set if this occurs and can be checked by the user Detection of an overflow depends on if the numbers are signed or unsigned For unsigned numbers, an overflow is detected from the end carry out of the msb For addition of signed numbers, an overflow cannot occur if one is positive and one is negative both have to have the same sign An overflow can be detected if the carry into the sign bit position and the carry out of the sign bit position are not equal The representation of decimal numbers in registers is a function of the binary code used to represent a decimal digit A 4bit decimal code requires four flipflops for each decimal digit This takes much more space than the equivalent binary representation and the circuits required to perform decimal arithmetic are more complex Representation of signed decimal numbers in BCD is similar to the representation of signed numbers in binary Either signed magnitude or signed complement systems The sign of a number is represented with four bits o 0000 for + o 1001 for To obtain the 10 s complement of a BCD number, first take the 9 s complement and then add one to the least significant digit Example: (+375) + (240) = +135 Computer Architecture 9
10 0 375 ( ) BCD ( ) BCD ( ) BCD Section 3.4 FloatingPoint Representation The floatingpoint representation of a number has two parts The first part represents a signed, fixedpoint number the mantissa The second part designates the position of the binary point the exponent The mantissa may be a fraction or an integer Example: the decimal number is o Fraction: o Exponent: +04 o Equivalent to x A floatingpoint number is always interpreted to represent m x r e Example: the binary number (with 8bit fraction and 6bit exponent) o Fraction: o Exponent: o Equivalent to +( ) 2 x 2 +4 A floatingpoint number is said to be normalized if the most significant digit of the mantissa is nonzero The decimal number 350 is normalized, is not The 8bit number is not normalized Normalize it by fraction = and exponent = 3 Normalized numbers provide the maximum possible precision for the floatingpoint number Section 3.5 Other Binary Codes Digital systems can process data in discrete form only Continuous, or analog, information is converted into digital form by means of an analogtodigital converter The reflected binary or Gray code, is sometimes used for the converted digital data The Gray code changes by only one bit as it sequences from one number to the next Gray code counters are sometimes used to provide the timing sequences that control the operations in a digital system Computer Architecture 10
11 Binary codes for decimal digits require a minimum of four bits Other codes besides BCD exist to represent decimal digits Computer Architecture 11
12 The 2421 code and the excess3 code are both selfcomplementing The 9 s complement of each digit is obtained by complementing each bit in the code The 2421 code is a weighted code The bits are multiplied by indicated weights and the sum gives the decimal digit The excess3 code is obtained from the corresponding BCD code added to 3 Section 3.6 Error Detection Codes Transmitted binary information is subject to noise that could change bits 1 to 0 and vice versa An error detection code is a binary code that detects digital errors during transmission The detected errors cannot be corrected, but can prompt the data to be retransmitted The most common error detection code used is the parity bit Computer Architecture 12
13 A parity bit is an extra bit included with a binary message to make the total number of 1 s either odd or even The P(odd) bit is chosen to make the sum of 1 s in all four bits odd The evenparity scheme has the disadvantage of having a bit combination of all 0 s Procedure during transmission: o At the sending end, the message is applied to a parity generator o The message, including the parity bit, is transmitted o At the receiving end, all the incoming bits are applied to a parity checker o Any odd number of errors are detected Parity generators and checkers are constructed with XOR gates (odd function) An odd function generates 1 iff an odd number if input variables are 1 Computer Architecture 13
14 Computer Architecture 14
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems  Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x
More informationChapter 1: Digital Systems and Binary Numbers
Chapter 1: Digital Systems and Binary Numbers Digital age and information age Digital computers general purposes many scientific, industrial and commercial applications Digital systems telephone switching
More informationLSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology
LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (09) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 101 102 103
More informationOct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: Our standard number system is base, also
More informationEE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
More informationLevent EREN levent.eren@ieu.edu.tr A306 Office Phone:4889882 INTRODUCTION TO DIGITAL LOGIC
Levent EREN levent.eren@ieu.edu.tr A306 Office Phone:4889882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n
More information2011, The McGrawHill Companies, Inc. Chapter 3
Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through
More informationNumber Representation
Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data
More informationplc numbers  13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers  3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
More informationBinary Representation. Number Systems. Base 10, Base 2, Base 16. Positional Notation. Conversion of Any Base to Decimal.
Binary Representation The basis of all digital data is binary representation. Binary  means two 1, 0 True, False Hot, Cold On, Off We must be able to handle more than just values for real world problems
More informationDigital Design. Assoc. Prof. Dr. Berna Örs Yalçın
Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 Email: siddika.ors@itu.edu.tr Grading 1st Midterm 
More informationCPEN 214  Digital Logic Design Binary Systems
CPEN 4  Digital Logic Design Binary Systems C. Gerousis Digital Design 3 rd Ed., Mano Prentice Hall Digital vs. Analog An analog system has continuous range of values A mercury thermometer Vinyl records
More informationDigital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur
Digital System Design Prof. D Roychoudhry Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture  04 Digital Logic II May, I before starting the today s lecture
More informationComputer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
More informationLecture 2. Binary and Hexadecimal Numbers
Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations
More informationNumber and codes in digital systems
Number and codes in digital systems Decimal Numbers You are familiar with the decimal number system because you use them everyday. But their weighted structure is not understood. In the decimal number
More informationNUMBER SYSTEMS. 1.1 Introduction
NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.
More informationCDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Data Representation Binary Codes Why 6311 and Excess3? Data Representation (1/2) Each numbering
More informationData Storage 3.1. Foundations of Computer Science Cengage Learning
3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how
More informationChapter 4: Computer Codes
Slide 1/30 Learning Objectives In this chapter you will learn about: Computer data Computer codes: representation of data in binary Most commonly used computer codes Collating sequence 36 Slide 2/30 Data
More informationLecture 11: Number Systems
Lecture 11: Number Systems Numeric Data Fixed point Integers (12, 345, 20567 etc) Real fractions (23.45, 23., 0.145 etc.) Floating point such as 23. 45 e 12 Basically an exponent representation Any number
More informationBinary Numbering Systems
Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and
More information2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal
2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal
More informationUseful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
More informationCSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
More information2 Number Systems. Source: Foundations of Computer Science Cengage Learning. Objectives After studying this chapter, the student should be able to:
2 Number Systems 2.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Understand the concept of number systems. Distinguish
More informationTo convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:
Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents
More informationNumber Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)
Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System A number system defines a set of values to represent quantity. We talk about the number of people
More informationGoals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1
Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal
More informationSolution for Homework 2
Solution for Homework 2 Problem 1 a. What is the minimum number of bits that are required to uniquely represent the characters of English alphabet? (Consider upper case characters alone) The number of
More informationBinary Numbers. Binary Octal Hexadecimal
Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how
More informationNumbering Systems. InThisAppendix...
G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal
More informationComputers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer
Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.
More informationToday. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real Time Systems: Binary Arithmetic
Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1
More informationBinary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1
Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1
More informationDivide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1
Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be
More informationData Storage. Chapter 3. Objectives. 31 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:
Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how
More informationMATH0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
More informationBinary Representation
Binary Representation The basis of all digital data is binary representation. Binary  means two 1, 0 True, False Hot, Cold On, Off We must tbe able to handle more than just values for real world problems
More informationBinary Division. Decimal Division. Hardware for Binary Division. Simple 16bit Divider Circuit
Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend 480 4136 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until
More informationCOMPSCI 210. Binary Fractions. Agenda & Reading
COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary > Octal, Hex Octal > Binary, Hex Decimal > Octal, Hex Hex > Binary, Octal Animation: BinFrac.htm Example
More informationUnsigned Conversions from Decimal or to Decimal and other Number Systems
Page 1 of 5 Unsigned Conversions from Decimal or to Decimal and other Number Systems In all digital design, analysis, troubleshooting, and repair you will be working with binary numbers (or base 2). It
More informationDigital Logic Design. Introduction
Digital Logic Design Introduction A digital computer stores data in terms of digits (numbers) and proceeds in discrete steps from one state to the next. The states of a digital computer typically involve
More informationBINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
More informationThis 3digit ASCII string could also be calculated as n = (Data[2]0x30) +10*((Data[1]0x30)+10*(Data[0]0x30));
Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]0x30) + 10*(Data[1]0x30) + (Data[2]0x30); This 3digit ASCII string could also be calculated
More informationCS321. Introduction to Numerical Methods
CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 405060633 August 7, 05 Number in
More informationECE 0142 Computer Organization. Lecture 3 Floating Point Representations
ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floatingpoint arithmetic We often incur floatingpoint programming. Floating point greatly simplifies working with large (e.g.,
More informationSheet 7 (Chapter 10)
King Saud University College of Computer and Information Sciences Department of Information Technology CAP240 First semester 1430/1431 Multiplechoice Questions Sheet 7 (Chapter 10) 1. Which error detection
More informationA single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulatorbased machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
More informationLecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
More informationBinary, Hexadecimal, Octal, and BCD Numbers
23CH_PHCalter_TMSETE_949118 23/2/2007 1:37 PM Page 1 Binary, Hexadecimal, Octal, and BCD Numbers OBJECTIVES When you have completed this chapter, you should be able to: Convert between binary and decimal
More informationNumber Systems and Radix Conversion
Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will
More informationDigital codes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
Digital codes This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationNumeral Systems. The number twentyfive can be represented in many ways: Decimal system (base 10): 25 Roman numerals:
Numeral Systems Which number is larger? 25 8 We need to distinguish between numbers and the symbols that represent them, called numerals. The number 25 is larger than 8, but the numeral 8 above is larger
More informationNumber Systems. Introduction / Number Systems
Number Systems Introduction / Number Systems Data Representation Data representation can be Digital or Analog In Analog representation values are represented over a continuous range In Digital representation
More informationA Step towards an Easy Interconversion of Various Number Systems
A towards an Easy Interconversion of Various Number Systems Shahid Latif, Rahat Ullah, Hamid Jan Department of Computer Science and Information Technology Sarhad University of Science and Information Technology
More informationCOMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationSistemas Digitais I LESI  2º ano
Sistemas Digitais I LESI  2º ano Lesson 6  Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA  PLDs (1)  The
More informationChapter Binary, Octal, Decimal, and Hexadecimal Calculations
Chapter 5 Binary, Octal, Decimal, and Hexadecimal Calculations This calculator is capable of performing the following operations involving different number systems. Number system conversion Arithmetic
More informationNUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
More informationLogic Reference Guide
Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationThis Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers
This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition
More informationHOMEWORK # 2 SOLUTIO
HOMEWORK # 2 SOLUTIO Problem 1 (2 points) a. There are 313 characters in the Tamil language. If every character is to be encoded into a unique bit pattern, what is the minimum number of bits required to
More informationExperiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa
Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation
More information1. Convert the following base 10 numbers into 8bit 2 s complement notation 0, 1, 12
C5 Solutions 1. Convert the following base 10 numbers into 8bit 2 s complement notation 0, 1, 12 To Compute 0 0 = 00000000 To Compute 1 Step 1. Convert 1 to binary 00000001 Step 2. Flip the bits 11111110
More informationTHE BINARY NUMBER SYSTEM
THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42
More informationSection 1.4 Place Value Systems of Numeration in Other Bases
Section.4 Place Value Systems of Numeration in Other Bases Other Bases The HinduArabic system that is used in most of the world today is a positional value system with a base of ten. The simplest reason
More informationZ80 Instruction Set. Z80 Assembly Language
75 Z80 Assembly Language The assembly language allows the user to write a program without concern for memory addresses or machine instruction formats. It uses symbolic addresses to identify memory locations
More informationPositional Numbering System
APPENDIX B Positional Numbering System A positional numbering system uses a set of symbols. The value that each symbol represents, however, depends on its face value and its place value, the value associated
More informationLecture N 1 PHYS 3330. Microcontrollers
Lecture N 1 PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers
More informationCOMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
More informationBase Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
More information1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:
Exercises 1  number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b)  435 2. For each of
More informationDigital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
More informationThe Answer to the 14 Most Frequently Asked Modbus Questions
Modbus Frequently Asked Questions WP34REV006091/7 The Answer to the 14 Most Frequently Asked Modbus Questions Exactly what is Modbus? Modbus is an open serial communications protocol widely used in
More informationCHAPTER 5 Roundoff errors
CHAPTER 5 Roundoff errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any
More informationCounters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4bit ripplethrough decade counter with a decimal readout display. Such a counter
More information3. Convert a number from one number system to another
3. Convert a number from one number system to another Conversion between number bases: Hexa (16) Decimal (10) Binary (2) Octal (8) More Interest Way we need conversion? We need decimal system for real
More informationAsynchronous counters, except for the first block, work independently from a system clock.
Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flipflops, they can be asynchronous or synchronous and they can
More informationBachelors of Computer Application Programming Principle & Algorithm (BCAS102T)
Unit I Introduction to c Language: C is a generalpurpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating
More informationCOURSE TITLE: INTRODUCTION TO COMPUTER DESIGN
NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: CIT344 COURSE TITLE: COURSE GUIDE COURSE GUIDE CIT344 Course Team Adaora Obayi (Developer/Writer)  NOUN Dr. Oyebanji (Programme
More informationCS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011
CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS
More informationEverything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6
Everything you wanted to know about using Hexadecimal and Octal Numbers in Visual Basic 6 Number Systems No course on programming would be complete without a discussion of the Hexadecimal (Hex) number
More informationCS201: Architecture and Assembly Language
CS201: Architecture and Assembly Language Lecture Three Brendan Burns CS201: Lecture Three p.1/27 Arithmetic for computers Previously we saw how we could represent unsigned numbers in binary and how binary
More informationUnited States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1
United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.
More informationSession 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
More informationMACHINE INSTRUCTIONS AND PROGRAMS
CHAPTER 2 MACHINE INSTRUCTIONS AND PROGRAMS CHAPTER OBJECTIVES In this chapter you will learn about: Machine instructions and program execution, including branching and subroutine call and return operations
More informationChapter 1. Binary, octal and hexadecimal numbers
Chapter 1. Binary, octal and hexadecimal numbers This material is covered in the books: Nelson Magor Cooke et al, Basic mathematics for electronics (7th edition), Glencoe, Lake Forest, Ill., 1992. [Hamilton
More informationToday s topics. Digital Computers. More on binary. Binary Digits (Bits)
Today s topics! Binary Numbers! Brookshear..! Slides from Prof. Marti Hearst of UC Berkeley SIMS! Upcoming! Networks Interactive Introduction to Graph Theory http://www.utm.edu/cgibin/caldwell/tutor/departments/math/graph/intro
More informationCHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
More informationKarnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
More informationFloating point package user s guide By David Bishop (dbishop@vhdl.org)
Floating point package user s guide By David Bishop (dbishop@vhdl.org) Floatingpoint numbers are the favorites of software people, and the least favorite of hardware people. The reason for this is because
More informationEE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
More informationTechnical Support Bulletin Nr.18 Modbus Tips
Technical Support Bulletin Nr.18 Modbus Tips Contents! Definitions! Implemented commands! Examples of commands or frames! Calculating the logical area! Reading a signed variable! Example of commands supported
More information150127Microprocessor & Assembly Language
Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessorbased systems are designed around the Z80. The Z80 microprocessor needs an
More information26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
More informationCSE 2300W DIGITAL LOGIC DESIGN
CSE 2300W DIGITAL LOGIC DESIGN How this class fits into ECE/CSE/EE/CS curricula: Already had at least some computer basics and one programming language. This course will emphasize some of the major inner
More informationRNcoding of Numbers: New Insights and Some Applications
RNcoding of Numbers: New Insights and Some Applications Peter Kornerup Dept. of Mathematics and Computer Science SDU, Odense, Denmark & JeanMichel Muller LIP/Arénaire (CRNSENS LyonINRIAUCBL) Lyon,
More information